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In this paper the nonlinear evolution of two-dimensional shear-flow instabilities near 
the ocean surface is studied. The approach is numerical, through direct simulation of 
the incompressible Euler equations subject to the dynamic and kinematic boundary 
conditions at the free surface. The problem is formulated using boundary-fitted 
coordinates, and for the numerical simulation a spectral spatial discretization method 
is used involving Fourier modes in the streamwise direction and Chebyshev 
polynomials along the depth. An explicit integration is performed in time using a 
splitting scheme. The initial state of the flow is assumed to be a known parallel shear 
flow with a flat free surface. A perturbation having the form of the fastest growing 
linear instability mode of the shear flow is then introduced, and its subsequent 
evolution is followed numerically. According to linear theory, a shear flow with a free 
surface has two linear instability modes, corresponding to different branches of the 
dispersion relation: Branch I, at low wavenumbers; and Branch 11, at high 
wavenumbers for low Froude numbers, and low wavenumbers for high Froude 
numbers. Our simulations show that the two branches have a distinctly different 
nonlinear evolution. 

Branch I :  At low Froude numbers, Branch I instability waves develop strong oval- 
shaped vortices immediately below the ocean surface. The induced velocity field 
presents a very sharp shear near the crest of the free-surface elevation in the horizontal 
direction. As a result, the free-surface wave acquires steep slopes, while its amplitude 
remains very small, and eventually the computer code crashes suggesting that the wave 
will break. 

Branch 11: At low Froude numbers, Branch I1 instability waves develop weak 
vortices with dimensions considerably smaller than their distance from the ocean 
surface. The induced velocity field at the ocean surface varies smoothly in space, and 
the free-surface elevation takes the form of a propagating wave. At high Froude 
numbers, however, the growing rates of the Branch I1 instability waves increase, 
resulting in the formation of strong vortices. The free surface reaches a large amplitude, 
and strong vertical velocity shear develops at the free surface. The computer code 
eventually crashes suggesting that the wave will break. This behaviour of the ocean 
surface persists even in the infinite-Froude-number limit. 

It is concluded that the free-surface manifestation of shear-flow instabilities acquires 
the form of a propagating water wave only if the induced velocity field at the ocean 
surface varies smoothly along the direction of propagation. 
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1. Introduction 
The interaction of sheared flows with the ocean surface is a challenging fluid- 

mechanics problem, which is important for several geophysical flows. Recently, 
observations of the ocean surface using the Synthetic Aperture Radar have added new 
interest on the subject by showing that significant, and sometimes intriguing, traces are 
left on the ocean surface by the viscous wake of ships. There is no complete theoretical 
explanation of such traces owing to the great complexity of the problem. 

Considerable progress has been made, however, in analysing some related idealized 
problems, involving the surface signature of simple vortex structures (see among others 
Sarpkaya 1986; Bernal & Kwon 1989; Willmarth et al. 1989; Dommermuth & Yue 
1990; Ohring & Lugt 1991). In these studies, it is found that vortices impinging upon 
the free surface cause localized characteristic ‘ scars’ and ‘striations’. A different 
vorticity/free-surface interaction problem, which can result in the generation of 
propagating water waves, is the nonlinear evolution of the instability of a shear flow 
with a free surface: It is well known that small wavy perturbations about an inviscid 
shear flow with an inflexional velocity profile grow exponentially in time. The question 
arises then as to whether the free-surface manifestation of the perturbation can reach 
an equilibrium state, possibly having the form of a propagating wave, once 
nonlinearities have saturated its growth. Knowing whether propagating waves can be 
generated, and their characteristics, like for instance amplitude and propagation speed, 
can potentially be of assistance to the wake-imaging problem. 

The simplest model for this interaction is the roll-up of a submerged vortex sheet 
close to the ocean surface. This problem has been investigated numerically by 
Tryggvason (1988) and Yu & Tryggvason (1990). Their computations consistently 
show that the vortices formed as a result of the roll-up of a submerged vortex sheet 
create a steep depression on the ocean surface, which invariably evolves into a breaking 
wave. One may conclude therefore that the roll-up of a vortex sheet does not generate 
propagating surface waves (barring possibly the case of a very deeply submerged 
vortex sheet, where the free-surface elevation is extremely small). Modelling of a shear 
flow with a vortex sheet is, however, justifiable only if the wavelength of the 
perturbation is much longer than the thickness of the shear in the flow. For 
perturbations with wavelengths comparable with the thickness of the shear, it is well 
known that continuous variations of the initial velocity field have quite different linear 
and nonlinear dynamics than vortex sheets. 

The linear problem of two-dimensional shear-flow/surface interaction was investi- 
gated in Triantafyllou & Dimas (1989) who found that, for every Froude number, 
two distinct regimes of unstable waves exist: Branch I, which appears at small 
wavenumbers (long wavelengths) for all Froude numbers; and Branch 11, which 
appears at large wavenumbers (short wavelengths) for low Froude numbers, and at 
small wavenumbers (long wavelengths) for high Froude numbers. The shape of the 
eigenfunction of the two modes reveals that the Branch I instability waves are almost 
identical to the ones that would develop below a rigid slip-free wall, whereas the 
Branch I1 instability waves develop substantial vertical velocity at the ocean surface. 
Based on this, it was conjectured in Triantafyllou & Dimas (1989) that, at least at low 
Froude numbers, Branch IT instability waves develop a more interesting free-surface 
manifestation than Branch I instability waves. 

In this paper, we study the nonlinear evolution of the two branches of unstable 
waves found in Triantafyllou & Dimas (1989). The flow is assumed to be inviscid, 
because the Reynolds number of shear flows in the ocean is extremely high: For a ship 
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wake, the Reynolds number is around 107-108; for a geophysical flow, it can be much 
higher. The approach we follow in this paper is a direct numerical simulation of the 
Euler equations subject to the dynamic and kinematic boundary conditions at the free 
surface. The formulation and numerical technique are contained in $92 and 3 ,  
respectively. The tests of the numerical technique are presented in $4. The results are 
presented in $ 5  and the conclusions are summarized in $6 .  

2. Formulation 
We consider the two-dimensional interaction of an initially parallel shear flow with 

the free surface (see definition sketch in figure 1). The equations of motion for an 
incompressible inviscid fluid are the continuity equation and the Euler equations 
subject to the dynamic and kinematic boundary conditions on the free surface. 

In two-dimensional form, the continuity equation is 

and the momentum equations are 

where lengths are non-dimensionalized with respect to the depth b of the initial shear 
flow (see figure l), and velocities with respect to the free-stream velocity U,; x’ and z’ 
are the horizontal and vertical coordinates, respectively, t’ is the non-dimensional time, 
v’ = (u’, w’) is the velocity vector, P‘ is the pressure, and F is the Froude number of the 
flow, based on the depth of the initial shear flow, F = U,/(gb)i. 

The dynamic and kinematic boundary conditions on the free surface are, respectively, 

where 7 is the free-surface elevation. 
It is more convenient to work in terms of the dynamic pressure p’,  defined as the 

pressure P’ minus the hydrostatic pressure (p ’  = P‘ - (- z’/F2)). Therefore, the 
momentum equations become 

dv‘ av’ - _  - -+v‘V.v’ =-Up’, 
dt‘ at’ 

while the boundary conditions become 

It is assumed that the water has infinite depth; so for z ’+ -  co, the flow becomes 
uniform and the dynamic pressure tends to zero. Finally, periodicity is imposed in the 
x-direction. 



214 A .  A .  Dimas and G.  S .  Triantafyllou 

FIGURE 1 .  Flow domain. 

In order to obtain a flow domain with boundaries fixed in time, we introduce 
boundary-fitted coordinates by means of the following transformation : 

dx‘, t’). (7) 1 = t’, x = x’, z = z’-  

Accordingly, the dynamic pressure and the velocity components are transformed as 
follows : 

(8) 

In the transformed system of coordinates, the free surface becomes the fixed plane 
z = 0. For z < 0, the continuity equation (1) and the momentum equation (5) are 
transformed as follows : 

dv 
dt at 
- = -+vV-V z= - V p + A .  

The forcing term A = ( ( a p p z )  @?/ax), -d2y/dt2) is a d’Alembert acceleration 
introduced by the non-inertial transformation (7). 

The dynamic and kinematic boundary conditions on the free surface become 

p = v / F 2 ,  w = O  at z = O ,  (1 1) 

u+ U,, w+-dy/dt, p = + O  for z+--oo. (12) 

while for z + - co, the boundary conditions become 

Equations (9) and (10) are solved numerically using a pseudospectral approximation 
method for the nonlinear terms of the momentum equation. It has been found that the 
pseudospectral approximation to the rotation, rather than the Reynolds stress, form of 
the nonlinear terms of the momentum equation does not directly cause unconditional 
nonlinear instability (Gotlieb & Orszag 1977). 

In rotation form, the momentum equation (10) is written as 

(13) 
a u  
at 
- = u x 0 - V17+ A,  

where 17 = p +i(u2 + w2)  is the dynamic pressure head, and w is the vorticity. 
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3. Numerical method 
For the numerical solution of the equations of motion, a fractional time-step scheme 

is used for the temporal discretization, and a spectral approximation method for the 
spatial discretization (Patera 1984). The computational domain is truncated at a depth 
z = -D in the z-direction, and has length C in the x-direction. 

At the first stage of each time step, the nonlinear terms of the momentum equation 
(1 3) are treated explicitly using a third-order Adams-Bashforth scheme : 

where c0 = g, c1 = -% and c2 = are the coefficients for the third-order Adams- 
Bashforth scheme, and At is the time step. The third-order Adams-Bashforth scheme 
is used because of its very low dispersion errors, and the relatively large portion 
of the imaginary axis included within the absolute stability region of the scheme. At 
this stage of the time step, no boundary conditions are applied. 

At the second stage of the time step, the pressure terms of the momentum equation 
(1 3) are treated implicitly : 

The two components of (15) can be combined in the following form: 

which is a Poisson's equation for the pressure head. We now impose the 
incompressibility condition (9) on the final velocity field v, and (16) becomes 

Equation (17) is used to solve for the pressure head. The term in the right-hand side 
of this equation depends only on the intermediate velocity field P+l and P + l .  

The boundary conditions of the problem are applied at that stage. The dynamic and 
kinematic boundary conditions (1 1) on the free surface are combined, in terms of the 
pressure head, to give 

The momentum equation (10) is combined with the boundary condition (12), applied 
at the lower boundary of the computational domain, to give 

= O  at z = - D .  (19) 

Then, the velocity field at the next time step is evaluated from (15). 

the following first-order partial differential equation : 
The free-surface elevation is evaluated from the boundary condition (12), by solving 

-+u(x, -D,.t)-=- ar w(x, - a7 
a t  ax 
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By choosing a large value for the depth D, u(x, - D, t )  can be replaced by U,. Then, 
(20) has constant coefficients, and its solution is simple. 

For the spatial discretization, all the unknown quantities (velocity components, 
pressure head, vorticity) are expanded as 

N 

dx, z ,  t> = c c q,,(t)exp 2Xi-  T:(z), (21) 
( I 1  < L n=o ( 3 

where L, N are the number of modes in each direction. T,*(z) is a normalized 
Chebyshev polynomial of order n, defined in the [ - D, 01 space as 

T,*(z) = T,(s) = T, -+ 1 ('a ), 
where - D < z < O a n d  -1 < s < + l .  

The free-surface elevation ~(x, t )  is expanded as 

Then, at the first stage of the fractional time step, after the application of the spectral 
approximations, (14) becomes 

All the nonlinear terms on the right-hand side of (24) are evaluated using a 
pseudospectral approximation method (Orszag & Kells 1980). Thus, the rotation term, 
for example, is evaluated as 

ZI x 0 = t ) (X i ,  Zk, t )  x W(Xi ,  Zk, t ) ,  

xt = iC/2L for -L  6 i < L, zk  = iD(cos(.rck/N)- 1) for 0 6 k 6 N .  
(26) 

The values of u(xa,zk,  t )  and @(xi,  zk ,  t )  in physical space are obtained from their 
representation in spectral space, using fast Fourier transform algorithms. Similar 
procedures are followed in order to evaluate the other nonlinear terms of (24), at the 
collocation points (26). Then, once all the nonlinear terms are represented in physical 
(collocation) space, again fast Fourier transform algorithms are used to obtain the 
nonlinear terms in the spectral (Fourier-Chebyshev) space. 

At the second stage of the fractional time step, Poisson's equation (17) for the 
pressure head has to be solved first. In accordance with the spectral approximation (21) 
for the pressure head, the following expression is defined: 

(25) 

where the collocation points are 

Then, Poisson's equation (17), at each time step, gives a set of uncoupled equations for 
the coefficient-functions 17L : 



Nonlinear interaction of shear ,$ow with a free suvface 217 

The boundary conditions (18) and (19) become 

l7, =g,  at z = 0, (29) 

dI7,Id.z = 0 at z =  -D .  (30) 

The functional expression for the solution of the above problem is 

Minimization of the functional expression (31) with respect to the coefficients of the 
spectral approximation (27), 

results in the following linear systems of equations for the unknown spectral 
coefficients mzn : 

ar , laml ,  = 0, (32 )  

where 0 < k < N .  The above is an ( N +  1) x ( N +  1) system of linear equations of the 
form A , x ,  = B,. Therefore, in order to get the pressure head in spectral space, such a 
linear system has to be solved for every Fourier mode. We note that the A ,  matrices 
are time-invariant, and are inverted only once at the beginning of the computation. 
Subsequently, at every time step only a back substitution has to be performed (an 
operation of order L P )  in order to obtain the spectral coefficients of the pressure head. 

The representation of the velocity field in spectral space at the next time step is 
evaluated from 

(34) 

where the derivatives of the pressure head in spectral space are directly evaluated from 
the representation of pressure head in spectral space (Orszag & Kells 1980). 

The free-surface elevation, at the next time step, is evaluated from the solution of 
(20). Using the spectral approximation (23) of the free-surface elevation, this equation 
becomes 

n+l  = "n+1- 
Vtn Utn A t ( V m Z 1 ,  

( 3 5 )  

where r ,  = 2niU, Z/C. For the solution of (35), a third-order Adams-Moulton scheme 
is used. 

The global time accuracy of the numerical scheme is O(At),  even though the local 
error at each stage of the time step is of higher order, because the operations involved 
in the two stages do not commute. 

There is a fundamental difficulty in computing, over long periods of time, highly 
nonlinear inviscid flows using spectral or pseudospectral methods : the nonlinear terms 
produce an energy cascade from low wavenumbers to high wavenumbers. Because a 
finite number of modes is retained, the cascade process accumulates energy in the 
highest-order modes (Myers, Taylor & Murdock 1981). Thus, the high-order modes 
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FIGURE 2. Filter function for various values of d. 

grow, and the solution eventually breaks down. It is, therefore, necessary to correct the 
results of the calculation by filtering the energy, which is accumulated in the high-order 
modes. In this study, after every time step is completed, all the spectral coefficients of 
the u and w components of the velocity field are multiplied by a factor Lf,, and those 
of the free-surface elevation 7 by a factor&, where 

1 - exp (- d( 1 - (i/q2)) 
1-exp(-d) ’ A =  

with Z = L for the Fourier modes, and Z = N for the Chebyshev modes (Haidvogel, 
Robinson & Schulman 1985). The value of d is adjusted so that only the highest modes 
are smoothed, while the large-scale features of the flow (represented by the low modes) 
are affected as little as possible. A plot of this filter function, for various values of d, 
is shown in figure 2. 

For inviscid, two-dimensional flows, the vorticity w’ of the flow, prior to the 
application of the transformation (7), satisfies the following conservation law: 

w’(x’, t’) d I/ = 0, “J dt‘ V(t’)  
(37) 

where V(t’) is the flow domain. 
When filtering is applied, this conservation is violated, since the filter removes an 

amount of vorticity from the flow, at the end of every time step. Consequently, a 
measure of the effect of the filter on the results of the computation is the total reduction 
of the value of the integral of (37), throughout the computation. In the computations 
reported here, the filtering parameter d is chosen such that the total reduction of (37) 
is not more than 1 YO of its initial value. 
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t = O  

FIGURE 3. Test computation of Stuart’s flow without filtering: vorticity field at different time instants. 
Wiggles appear at t z 40. The length in the x-direction is twice the length of the computational 
domain. 

4. Numerical tests 

Several numerical tests have been performed to test the code, a detailed presentation 
of which can be found in Dimas (1991). We will only present two tests here: (i) the 
nonlinear evolution of subharmonic instabilities of Stuart’s (1967) flow, and (ii) the 
nonlinear evolution of a third-order Stokes wave. 
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Stuart’s flow is a family of steady-state periodic solutions of the Euler equations 
(Stuart 1967). The velocity components of this flow are given by the following 
expressions : 

Hsinh (kz) 
Hcosh (kz)  + Scos (kx)  ’ 

S sin (kx) 
Hcosh (kz) + Scos (kx) ’ 

u(x ,z )  = u, 

w(x,z) = u, (39) 

where H and S = ( H 2 -  1); parametrize the family of solutions, and U ,  is the free- 
stream velocity ( H  = 1.2 and U ,  = 0.5 for this study). The flow is unstable to a 
subharmonic disturbance flow with a wavenumber ik ,  half the wavenumber of the 
fundamental mode of instability (Pierrehumbert & Widnall 1982). 

For the unbounded fluid flow, the hydrostatic pressure term is zero. The boundary 
conditions are periodicity in the x-direction, and uniform flow as z +  & 00. For the 
numerical treatment, the computational domain in the z-direction is truncated at 
z = -$D and $D. Therefore, the collocation points are 

x$ = iC/2L for - L  < i < L, zk = @cos(nk/N) for 0 < k < N .  (40) 

At t = 0, a small subharmonic disturbance flow, with velocity components uo(x, z )  
and wo(x, z), is superimposed on the saturated flow (38) and (39). This disturbance flow 
is defined by 

u0(x, Z )  = Au*(z) cos (;kk~+ O) ,  W J X ,  Z)  = Aw*(z) cos (;kx + O ) ,  (41) 

where u*(z) and w*(z) are the normalized eigenfunctions of the corresponding linear 
instability problem, k = 0.4446 is the most unstable wavenumber of the mean flow 
(Michalke 1984), and A is a constant chosen such that the initial disturbance flow is 
small with respect to the saturated flow. The disturbance flow was chosen to have a 
phase difference 0 = !jn with the saturated flow, so that vortex pairing occurs (Metcalfe 
et al. 1987). Values of the phase difference other than integer multiples of n also lead 
to vortex pairing, while pairing is inhibited when 6’ = nn, where n is an integer. The 
cases 6’ = nn are anomalous, resulting in the shredding interaction, which is rarely seen 
experimentally (Patnaik, Sherman & Corcos 1976). 

First, we present the numerical results without filtering. The parameters for the 
numerical computation are: At = 0.01, L = 16, N = 48, and D = 24. The com- 
putational domain has the same length, c = 4n/k = 28.3, in the x-direction as the 
wavelength of the initial disturbance flow. Therefore, the representation of the initial 
velocity field in spectral space consists of non-zero coefficients for the zeroth first and 
second Fourier modes, and zero coefficients for all the other Fourier modes. Numerical 
results only up to time t = 60 are reported, because by then the accumulation of energy 
at the high-order modes has started to pollute the solution. This can be seen at the 
plots of the vorticity field at different time instants in figure 3.  The deterioration of the 
solution starts with the appearance of wiggles, while in spectral space, considerable 
noise develops in the high Fourier and Chebyshev modes. 

Next, the same computation is performed up to time t = 200, with filtering. The 
value of the parameter d in the filter function (36) was taken to be d = 16. Three- 
dimensional plots of the vorticity field, at different time instants, are shown in figure 
4. The solution in wiggle-free, and the large-scale structure of the vorticity field is 
unaffected. Also, the value of the integral of (37) remains almost constant (within 
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FIGURE 4. Test computation of Stuart’s flow with filtering: vorticity field at different time instants. 
The solution remains smooth. The length in the x-direction is twice the length of the computational 
domain. 

1/1000 of its initial value) throughout the computation. We can infer, therefore, that 
the filter dissipated the energy from the high-order modes without altering the large- 
scale features of the flow, which are represented by the low-order modes. 

Vorticity contour plots of the flow, at different time instants, are shown in figure 5.  

8 FLM 260 
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Fourier Spectral 
modes coefficient 

8 0.099672 
12 0.099909 
16 0.099952 
24 0.09998 1 

TABLE 1. The magnitude of the spectral coefficient 11111 after eight periods T 

L 11111 

The disturbance flow grows, and initiates the pairing of the vortices of the saturated 
flow. After the pairing is completed, the flow reaches another saturated quasi-steady 
state, which has half the wavenumber of the initial saturated state. A similar 
computation conducted by Metcalfe et al. (1987), through a direct simulation of the 
Navier-Stokes equations at Re = 100, shows large-scale features of the flow very 
similar to the ones in figure 5.  

Next, in order to test the free-surface modelling part of our algorithm, the third- 
order Stokes plane progressive wave is simulated. Ideally, simulating the exact solution 
of the Stokes waves would be desirable, but obtaining the exact Stokes wave is a non- 
trivial task per se (see Dommermuth et al. 19SQ and, instead, we used as an initial 
condition the third-order Stokes wave, for which analytical expressions are available. 

u = -elcz (acos(kx-wt)+a2kcos2 ( k x - w t ) + ~ ~ k ~ ( ~ ~ ~ ~ ~ ( k x - w ~ t ) - ~ ) ~ ~ ~ ( k ~ - ~ t ) ) ,  
,$ 
F 

(42) 

,@ 

F 
w = - (elcz - 1) (a  sin (kx - ot) + a2k sin 2(kx - wt )  

+ a3k2(: cos2 (kx - wt )  -g) sin (kx - wt)), (43) 
while the free-surface elevation is 

~ ( x ,  t )  = a cos (kx - wt)  + :a2k cos 2 (kx - ot) +$a3k2 cos 3 (kx - wt). (44) 

For the numerical test, the parameter values Froude number F = 1, wavenumber 
k = 1, and wave amplitude a = 0.2 were selected. Several computations are performed 
up to time t = 50, which is about eight periods Tof oscillations (T  = 2n/w M 6.16). The 
truncation depth D = 8 is chosen so that the values of the velocity components of the 
flow at z = - D are within 1 /OOO of their values at z = - co. The number of Chebyshev 
modes N = 32 is chosen so that the values of the spectral coefficients of the expansion 
(21) of order n > iN remain at all times at most 1000 times smaller than the maximum 
value, which corresponds to the first mode for the u velocity component, and to the 
zeroth mode for the w velocity component. The filtering constant is set to d = 16. 

In order to demonstrate the convergence properties of the numerical method, we first 
keep the time step At = 0.00025 constant, and vary the number of Fourier modes 
L (8, 12, 16, 24). We next keep constant the number of Fourier modes L = 16, and 
successively decrease the time step At (0.001, 0.0005, 0.00025). 

For the first set of computations, the magnitude of the spectral coefficient of the first 
Fourier mode of the free-surface elevation after eight periods T is given in table 1. The 
plot of the corresponding relative error e, with respect to the exact value ly,l = 0.1, as 

8-2 
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FIGURE 7. Stokes wave: free-surface elevation ~(x ' ,  t') a t  several time instants. 

a function of l/L (figure 6), shows that the numerical scheme has indeed spectral 
accuracy. 

From the calculation with L = 24, the plot of the free-surface elevation 7 as a 
function of x, at several time instants, is shown in figure 7. The shape of the free-surface 
elevation remains practically unchanged after eight periods T of oscillations. In fact, 
the maximum relative error in the shape of the free-surface elevation after eight periods 
is 0.001. 

For the second set of computations, the value of the free-surface elevation at the 
crest of the wave after eight periods T is given in table 2. It is shown that the 
convergence is indeed of @At), since by halving the time step the relative error is also 
approximately halved. 
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Time step Crest height Relative 
At Y C W 8 1  error 

0.001 0.226945 36 

0.000 5 0.22501920 

0.00025 0.22402364 

0.00855998 

0.004443 99 

TABLE 2. The value of the free-surface amplitude at the crest of the wave after eight periods T. 

5 .  Results 
We now consider the interaction of a two-dimensional shear flow with a free surface. 

The initial velocity distribution U(z’) is assumed known. In this paper, the results for 
the following velocity profile are presented : 

1 
cosh2 (CTZ’) ’ 

U(Z’) = u, +(U,- U,) (45) 

where U ,  is the free-stream velocity and U, is the centreline velocity. The values 
U ,  = 1, U, = 0.0012, CT = 0.881 37 are used, and the corresponding profile is shown in 
figure 8. This profile has been measured in the near-wake of a NACA 0003 hydrofoil 
in unbounded fluid by Mattingly & Criminale (1972). 

5.1. Summary of linear theory 

For the linear stability analysis of the flow, a small disturbance flow ( ~ ’ ( x ’ ,  z’, t’), 
w’(x’, z’, t’)) is superimposed on the initial mean flow U(z’). The evolution of the 
unsteady disturbance flow is studied by linearizing the equations of motion around the 
mean velocity profile. Because the mean flow is parallel, wavy perturbations can be 
considered in the form : 

(46) 

where k is the wavenumber and w is the frequency. An eigenvalue problem for the 
frequency o is then obtained, consisting of Rayleigh’s equation subject to the linearized 
free-surface boundary conditions. The eigenvalue problem can be solved numerically 
by approximating with a generalized algebraic eigenvalue problem. A detailed stability 
analysis can be found in Triantafyllou & Dimas (1989). We summarize here only the 
main results. 

An inflexional shear flow with a free surface has two instability modes: one at low 
wavenumbers, that we refer to as Branch I, and one at high wavenumbers, of order 
k z 1/F2, that we refer to as Branch 11. Branch I is to within an error of order F2 the 
same as the antisymmetric stream function instability in infinite fluid, whereas Branch 
I1 is a ‘hybrid’ mode, in-between the symmetric and antisymmetric stream function 
modes in unbounded fluid. As the Froude number increases, the growth rates and the 
range of unstable wavenumbers of the Branch I instability decrease. On the other hand, 
the growth rates of the Branch I1 instability increase, and the range of the unstable 
wavenumbers increases and moves to the low-wavenumber region. For F = 00, the 
Branch I1 instability of the free-surface flow is the same as the symmetric stream 
function instability of the corresponding unbounded flow, whereas Branch I 
disappears. 

u’(x’, z’, 1’) = u*(z’) exp (i (kx’ - ot’)), w’(x’, z’, t’) = w*(z’) exp (i (kx’ -of)), 
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FIGURE 8. Mean velocity profile. 

This behaviour is demonstrated in figure 9, where the growth rates (wi = Im(w) 
versus k = Re(k)) for various Froude numbers are shown for the profile (45). 

5.2. Nonlinear evolution of Branch I instability 
We start with the nonlinear evolution of the Branch I instability for the flow (velocity 
profile (45)). The disturbance introduced at t’ = 0 has the form of the fastest growing 
wave of the linear problem. In other words, the two velocity components are given by 

(47) 

where k is the wavenumber of the instability, and u*(z’), w*(z’) are found from the 

u~(x’, z’) = Re {u*(z’) exp (ikx’)}, wh(x’, z’) = Re {w*(z’) exp (ikx’)}, 
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FIGURE 10. Branch I, F = 0.5 : horizontal velocity u'(x', z', 1') of the perturbation flow at the 
collocation point (xo, zo). The linear-regime exponential growth saturates after time t' w 60. 

solution of Rayleighs equation subject to the linearized conditions at the free surface. 
The free-surface elevation associated with the disturbance is given by 

vo(x') = Re {a exp (ikx')}, (48) 
where c( is the complex amplitude of the free-surface elevation. Since u*(z'), w*(z') and 
a are obtained from the solution of a linear eigenvalue problem, they can be evaluated 
to within an arbitrary multiplying constant. The constant is chosen so that the 
magnitude of the disturbance velocity field is much smaller than the magnitude of the 
velocity in the parallel shear flow (except at the points where the latter vanishes). The 
initial disturbance flow is chosen such that the maximum velocity of the initial 
disturbance flow is about 1 YO of the free-stream velocity U,. The computations are 
performed in an inertial frame of reference moving at a speed equal to the phase 
velocity c, = o,/k of the linear instability, and the results are presented in the same 
moving frame. The initial mean flow in the moving frame is U(z')-c,. 

The linear stability results for the most unstable wave at Froude number F = 0.5 are: 
k = 0.4, w, = 0.1098 (T  = 2n/w, = 57.2), wi = 0.038. For the numerical solution, 
several computations are performed, where the time step At takes the values 0.01, 
0.002, 0.0004, and the number of Fourier modes L takes the values 16, 32, while the 
other parameters are: N = 48, D = 12, C = 2n/k = 15.7 and d = 16. The truncation 
depth D, and the number of Chebyshev modes N are chosen so that all flow 
components have negligible z-dependence for z c -+D, and the spectral coefficients of 
order n > +N remain small at all times. 

The plot of the horizontal velocity u' of the perturbation flow (defined as the total 
flow minus the mean flow) at the collocation point (xo, z,,) of the moving frame, as a 
function of time, is shown in figure 10. Initially, the growth of the numerical solution 
follows the linear theory prediction, but eventually the nonlinear terms become 
significant and the solution deviates from the linear theory. 

The free-surface elevation as a function of x', at different instants in time, is shown 
in figure 1 1. During the early stages of the evolution, where the evolution is basically 
linear, the free-surface elevation has a sinusoidal shape. Subsequently, as nonlinear 
terms become significant, the free-surface elevation acquires a highly non-sinusoidal 
shape with steep slopes. In particular, a very sharp depression of the free-surface 



-0.12 

-16 -12 -8 0 4 8 12 16 
X' 

\ I  
\ I  
$ 1  

b 
- \ /  

~ 1 I . I I 1 1 I 1 , 1 1 I I . 1 I , t l l . l l l l l  

FIGURE 12. Branch I, F = 0.5: vorticity contour plot of the perturbation flow (the free-surface 
elevation is amplified by a factor of ten) at time t' = 260. It shows the presence of two vortices per 
wavelength with opposite signs. Solid lines represent counterclockwise rotation, dashed lines 
represent clockwise rotation, the interval between contour levels is 0.1, and the length in the x- 
direction is twice the length of the computational domain. 

elevation develops at the trough of the wave, and it becomes so large that at time 
t' z 260 the computer program crashes. In the spectral space, as we approach the time 
of crashing, there is a simultaneous amplitude increase in all Fourier modes. This 
behaviour is quite different than the one encountered in the energy cascade process, 
described in 94, where accumulation of energy started only in the high Fourier modes, 
and eventually destroyed the solution. In the present case, the action of filtering cannot 
stop the growth of the Fourier modes, which is clearly caused by the fact that the slope 
of the wave approaches infinity at some point. 
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FIGURE 13. Branch I, F = 0.5: velocity vector plot of the perturbation flow (the free-surface elevation 
is amplified by a factor of ten) at time t' = 260. Sharp horizontal velocity shear develops at the free 
surface. The length in the x-direction is twice the length of the computational domain. 

24' 

FIGURE 14. Branch I, F = 0.5: horizontal velocity u'(x',z' = 7, t') of the perturbation flow at the free 
surface and at different time instants. Sharp shear develops before the program crashes. Curves as in 
figure 11. 

For different combinations of At and L, we observe the following behaviour. For the 
same number L = 16 of Fourier modes, as the time step decreases from 0.01 to 0.002 
to 0.0004, the program crashes at a later time, t' z 120, t' z 140, f' x 260, respectively, 
but for the common time interval the results are practically the same. Similarly, for the 
computations with time step At = 0.002, as the number of Fourier modes doubles from 
16 to 32, the computer crashes at a later time, t' z 120, t' z 140, respectively, but, 
again, for the common time interval the results are the same. The delay of the crashing 
is attributed to the fact that, by reducing the size of the time step or increasing the 
number of Fourier modes, the computation can capture steeper slopes of waves. 
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Based on these observations we infer that this free-surface depression will become 
larger and steeper, resulting in a breaking wave. This observation is in agreement with 
the numerical results of Tryggvason (1988), who also finds a steep depression on the 
free surface, and eventually wave breaking, when strong vortices are formed close to 
the free surface. Interestingly, just before crashing, the wave height remains very small, 
approximately 1/100 of the wavelength. It is clear, therefore, that the breaking can 
only be attributed to the presence of velocity shear near the free surface. This can best 
be seen by looking at the perturbation flow, defined as the total flow minus the mean 
flow. The vorticity contour plot and the velocity vector plot of the perturbation flow 
before breaking are shown in figures 12 and 13, respectively. As these plots show, two 
strong vortices per wavelength are formed in the perturbation flow. The two vortices 
have opposite signs, and, as a result, the induced horizontal velocities of the 
perturbation flow at the trough and the crest of the free-surface elevation acquire large 
magnitudes and opposite signs (figure 14). In other words, a very sharp horizontal 
velocity shear develops along the free surface, which is responsible for the breaking of 
the wave. The vertical velocity component remains small throughout the process. 

Vorticity contour plots of the total flow, at different time instants, are shown in 
figure 15. When the initial flow is added to the perturbation flow, it reinforces the 
vortices that have the same sign as the initial vorticity, and cancels the vortices that 
have the opposite sign than the initial vorticity. As a result only one vortex per 
wavelength is present in the total vorticity plot. These vortices have an elongated oval 
shape, extending for about half the wavelength in the x-direction. 

We next consider the evolution of the most unstable Branch I instability wave at 
a higher Froude number, F = 1.5. The linear stability analysis results are: k = 0.3, 
w, = 0.0813 (T  = 77.3), oi = 0.026. For the numerical solution, the parameters are: 
L = 32, N = 64, At = 0.0004, D = 12, C = 2n/k = 15.7 and d = 16. The free-surface 
elevation ~(x’, t’) at different time instants is shown in figure 16. Again, during the early 
stages of the evolution the free-surface elevation has a sinusoidal shape, and grows 
according to the linear theory prediction up to time t’ w 100. Then, similarly to the 
previous case, as nonlinear terms become significant the slope of the free-surface wave 
becomes steep. The program eventually crashes at time t‘ z 190. At the time of 
breaking, the wave height, although larger than the one reached at I; = 0.5, is again 
very small, approximately &, of the wavelength, The breaking is again caused by the 
development of a sharp horizontal velocity shear along the free surface (figure 17). 

5.3. Nonlinear evolution of Branch 11 instability 
In this section we consider the nonlinear evolution of the Branch I1 instability waves 
of the parallel flow (45). We, first, consider the evolution of two Branch I1 instability 
waves for Froude number F = 1.5. The first, with wavenumber k = 2, has a growth 
rate 20 % smaller than the maximum, while the second, with wavenumber k = 1.6, is 
the wave with the maximum growth rate. 

For the case with k = 2, the linear stability analysis results are: k = 2, w, = 1.126 
(T  = 5.58), wi = 0.0126. The parameters used in the numerical simulation are: L = 16, 
N = 32, At = 0.001, D = 8, C = 2n/k  = 3.14, d = 16, and the computation is carried 
out up to time t’ = 1000. Again, the computation and the results are presented in a 
frame of reference that moves with the phase velocity of the linear instability wave. 
Vorticity contour plots of the flow, at different time instants, are shown in figure 18. 
The free-surface elevation at different instants in time is shown in figure 19. The 
variation with time of the amplitude of the free-surface elevation, at the collocation 
point xo, is shown in figure 20. 
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FIGURE 16. Branch I, F = 1.5: free-surface elevation ~ ( x ' ,  t') at different time instants. After the 
saturation of the instability growth, the wave acquires steep slopes. A, t' = 0; B, 50; C, 100; D, 150; 
E, 190. 
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FIGURE 17. Branch I, F =  1.5: horizontal velocity u'(x',z' = 7, t') of the perturbation flow at the 
free surface and at different time instants. Sharp shear develops before the program crashes. Curves 
as in figure 16. 

The disturbance flow, during the early stages of the flow, grows according to the 
linear theory prediction, but at time t' z 100 the instability growth is saturated and the 
flow approaches asymptotically an equilibrium state, in which the magnitude (of 
the maximum velocity) of the perturbation flow is about & of the initial flow U,. 
Examination of the perturbation flows shows that, as in Branch I waves, two vortices 
of opposite sign are formed at each wavelength (figure 21). Unlike the low-Froude- 
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FIGURE 18. Branch 11, F = 1.5, k = 2: vorticity contour plots at different time instants. The flow 
reaches an equilibrium state, and the vortices are weak. The length in the x-direction is twice the 
length of the computational domain. 
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FIGURE 20. Branch 11, F = 1.5, k = 2: free-surface amplitude .y(x', t') at the collocation point xo. The 
frequency of the oscillation changes in the nonlinear regime. It increases by 20 % with respect to its 
linear-regime value. 

number Branch I waves, however, the vortices are weak, and their dimensions are small 
compared to their distance from the free surface. As a result the velocity field at the free 
surface varies smoothly with x (figure 22), and a propagating surface wave is formed. 

The free-surface elevation retains a harmonic shape during the nonlinear stage of the 
flow, and the final wave height is approximately of the wavelength. The nodes of the 
free-surface wave can be seen in figure 19 to move downstream along the x-direction. 
As the plot has been made in a frame of reference that moves with a speed equal to the 
phase velocity of the linear wave, this implies that the phase velocity of the water wave 
in the final equilibrium state is larger than the phase velocity during the linear stages 
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FIGURE 21. Branch 11, F = 1.5, k = 2: vorticity contour plot of the perturbation flow at time t’ = 600 
showing two weak vortices per wavelength with opposite sign of rotation. The length in the x- 
direction is twice the length of the computational domain. 
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FIGURE 22. Branch 11, F = 1.5, k = 2:  velocity vector plot of the perturbation flow at time t’ = 600. 
The velocity field variation at the free surface is smooth. The length in the x-direction is twice the 
length of the computational domain. 

of the flow. The same holds for the frequency of the wave. In fact, the frequency of the 
final state is w, x 1.35 (T x 4.7) in the fixed frame of reference, showing an increase of 
about 20 % from its linear theory value. The observed increase of the frequency in the 
nonlinear regime is consistent with the fact that nonlinearities have a stabilizing effect. 

For the wave with the maximum growth rate, we have: k = 1.6, a, = 1.039 
(T  = 6.05), oi = 0.0155. The parameters used in the numerical simulation are: L = 16, 
N = 32, At = 0.001, D = 8, C = 2z/k = 3.14, d = 16. The computation is carried out 
up to time t’ = 600, and the flow approaches asymptotically an equilibrium state. 
Vorticity contour plots of the flow and the free-surface elevation at different time 
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FIGURE 23. Branch 11, F = 1.5, k = 1.6: vorticity contour plots at different time instants. The flow 
reaches an equilibrium state, and the vortices are weak. The length in the x-direction is twice the 
length of the computational domain. 

instants are shown in figures 23 and 24, respectively. The final results are quite similar 
to the ones found in the previous simulation for the wave with wavenumber k = 2. 

We next consider the evolution of the Branch IT instability at higher Froude 
numbers, where the linear-instability growth rates are higher. The linear stability 
analysis results for the most unstable wave at F = 2.5 are: k = 1.2, w, = 0.68 (7' = 9.2), 
oi = 0.069. The parameters for the numerical simulation are: L = 16, N = 48, 
At = 0.00025, D = 8, C = 2n/k = 5.24 and d = 16. The free-surface elevation at 
different instants in time is shown in figure 25. In this case, the free-surface wave 
reaches a substantial height, approximately equal to of the wavelength. Unlike the 
lower-Froude-number cases previously discussed, the computer code crashes at a time 
t' M 45, suggesting that the free-surface elevation breaks. At the breaking time, the 
magnitude of the perturbation flow is roughly f of the initial flow. 

In figure 25, it is clear that the slope of the free-surface elevation is not very steep, 
at least for as long as we could carry out the simulation reliably. This suggests that the 
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FIGURE 24. Branch 11, F =  1.5, k = 1.6: free-surface elevation ~(x ' ,  t') at different time instants. The 
final wave height is substantial (A of the wavelength). A, t' = 0; B, 150; C, 300; D, 450; E, 600. 
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FIGURE 25. Branch 11, F = 2.5: free-surface elevation ,q(x', t') at different time instants. The wave 
height reaches a substantial value (5 of the wavelength) before the wave breaks. A, t' = 0; B, 10; C, 
20; D, 30; E, 40; F, 45. 

mechanics of wave breaking for Branch TI waves are different than those of Branch T 
waves. In fact, breaking of Branch 11 waves is caused by large variations along the x- 
axis of the w' velocity component of the flow at the free surface. This can be seen in 
figure 26, where the partial derivative aw'lax' of the vertical velocity component at the 
free surface is plotted at different time instants: at the initial stages of the instability, 
the value of aw'/ax' is small and the corresponding curve has a sinusoidal shape, but 
at later times the value of the derivative near the trough of the wave increases 
substantially, showing the presence of strong vertical velocity shear in the horizontal 
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FIGURE 26. Branch 11, F = 2.5 : partial derivative aw’lax’ of the vertical velocity w’(x’, z’ = 7, t’) at the 
free surface and at different time iastants. Sharp vertical velocity shear develops at the trough of the 
free-surface wave. Curves as figure in 25. 
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FIGURE 27, Branch 11, F = 2.5: vorticity contour plot of the perturbation flow at time t’ = 45. 
The length in the x-direction is twice the length of the computational domain. 

direction. The development of velocity shear at the free surface can be understood by 
examining the perturbation flow field. In the perturbation flow two vortices with 
opposite signs are formed per wavelength which generate sharp shear in the vertical 
velocity component (figures 27 and 28). This sharp vertical velocity shear causes the 
breaking of the wave, while the horizontal velocities at the free surface remain small. 

The same computation is performed for values of At ranging from 0.01 to 0.00025 
(with L up to 32 and Nup to 64), and in all cases the program crashes at about the same 
time. The plot of the free-surface amplitude ~(x’, t’) at the collocation point x, (figure 
29) shows that the crashing of the program occurs while the instability is still growing 
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FIGURE 28. Branch 11, F = 2.5: velocity vector plot of the perturbation flow at time t‘ = 45. The 
horizontal velocities at the free surface are much smaller than the vertical velocities. The length in the 
x-direction is twice the length of the computational domain. 

FIGURE 29. Branch 11, F = 2.5 : free-surface amplitude ~ ( x ’ ,  t’) at the collocation point xo. The 
exponential growth of the linear regime continues till the breaking of the wave. 

exponentially in time with the growth rate predicted by linear theory. It seems clear, 
therefore, that there is a value of Froude number at which the nonlinear evolution of 
the Branch I1 waves changes from a propagating wave to a breaking wave; an exact 
determination of this value is computationally very expensive. Based on the 
computations that we have conducted, we estimate this value to be somewhat lower 
than 2.5. 

If the Froude number is further increased, the free-surface wave breaks at even 
earlier times owing to the larger growth rates of the instability. In fact for high-Froude- 
number flows, the nonlinear evolution of the instability follows very closely that of the 
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infinite-Froude-number case. For F = co, the linear stability analysis results (for the 
most unstable wave) are: k = 0.8, w, = 0.439 (T  = 14.3), wi = 0.141. For the numerical 
solution, the parameters are: L = 16, N = 64, At = 0.00025, D = 8, C = 2x/k = 7.85 
and d = 16. The free-surface elevation ~ ( x ' ,  t') at different time instants is shown in 
figure 30. The amplitude of the partial derivative &v'/ax' of the vertical component w' 
of the velocity field at the free surface, at different time instants, is shown in 
figure 31. The velocity vector plot of the perturbation flow, just before breaking, is 
shown in figure 32. The free-surface amplitude at the collocation point xo as a function 
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FIGURE 32. Branch 11, F = co : velocity vector plot of the perturbation flow at time t’ = 20 showing 
that the strong vertical velocity shear near the troughs and the crests of the free-surface wave persists 
even in the infinite-Froude-number limit. The length in the x-direction is twice the length of the 
computational domain. 

FIGURE 33. Branch 11, F = co : free-surface amplitude ~ ( x ’ ,  t’) at the collocation point x,. The 
free-surface wave breaks well before the saturation of the linear-regime exponential growth. 

of time is shown in figure 33. Vorticity contour plots of the flow, at different time 
instants, are shown in figure 34. As in the F = 2.5 case, the free-surface wave seems to 
break at a time t’ x 20 during the linear stages of the development of the flow, when 
the disturbance flow is still growing exponentially in time. At that time the wave height 
is about of the wavelength, while the perturbation flow is about of the initial flow. 
The computation was repeated for values of At ranging from 0.01 to 0.00025 (with L 
up to 32 and N up to 96), and, in all cases, the program crashed at about the same time. 

We conclude, therefore, that in the infinite-Froude-number limit, the Branch TT 
instability does not reach an equilibrium state. This raises the following interesting 
question. Based on linear theory, the infinite-Froude-number limit is identical to the 
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FIGURE 34. Branch 11, F = co : vorticity contour plots at different time instants. The length in the 
x-direction is twice the length of the computational domain. 
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FIGURE 35. Unbounded wake, symmetric stream function mode: vorticity contour plot at time 
t = 90. The flow reaches an equilibrium state where the vortices have the characteristic staggered 
formation. Solid lines represent negative vorticity, dashed lines represent positive vorticity, the 
interval between contour levels is 0.12, and the length in the x-direction is twice the length of the 
computational domain. 
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FIGURE 36. Unbounded wake, symmetric stream function mode: Pressure contour plot at time 
t = 90. These is no isopressure line, which has the shape of a possible free-surface elevation. Solid lines 
represent negative pressure, dashed lines represent positive pressure, the interval between contour 
levels is 0.01, and the length in the x-direction is twice the length of the computational domain. 

symmetric stream function mode of the same velocity profile in unbounded fluid. How 
similar then is the nonlinear evolution of the flow at the infinite-Froude-number limit 
to the flow obtained using as an initial condition the symmetric stream function mode? 
In order to answer this question, we conducted a numerical simulation of the Euler 
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equations in unbounded fluid using as initial condition the symmetric stream function 
mode. Interestingly, we found that the flow eventually reaches an equilibrium state. 
This is demonstrated in figure 35 (vorticity contour plot at time t = 90), which shows 
the formation of a Karma, vortex street. An explanation for the qualitatively different 
nonlinear behaviour between the infinite-Froude-number limit and the symmetric 
streani function mode in unbounded fluid can be found by examining the isobars of the 
equilibrium state of the latter (figure 36). From this plot it is clear that there is no isobar 
that has the shape of a kinematically admissible free-surface elevation. 

6 .  Conclusions 
In this paper we have investigated numerically the two-dimensional nonlinear 

interaction of an initially parallel shear flow with a free surface. Our investigation was 
aimed mainly at studying the deformation of the free surface as a result of the growth 
of the shear flow instability, and the relation of this deformation to the vortical 
structures formed in the fluid below. In Triantafyllou & Dimas (1989), we found that 
a shear flow with a free surface possesses two modes of linear instability, corresponding 
to two different branches of the dispersion relation, named for brevity Branch I and 
Branch IT. The main difference between the two modes from the physical point of view 
is that Branch I develops a significant horizontal velocity at the free surface, and a very 
small vertical velocity, whereas Branch I1 has a substantial vertical velocity at the free 
surface. This difference is very important in the subsequent nonlinear evolution of the 
two modes, as the dynamics of Branch I waves seem to be dominated by the variation 
of the horizontal velocity at the free surface, whereas the dynamics of Branch I1 waves 
seem to be dominated by the variation of the vertical velocity at the free surface. 

The appearance of very strong shear in either of the two velocity components caused 
our code to crash; we tentatively identify this behaviour as ‘breaking’ of the wave. The 
physical reasons for wave breaking, inferred from the results of the numerical 
simulation, can be summarized as follows: Branch I and Branch I1 waves can both 
create breaking free-surface waves. Although in both cases wave breaking occurs 
because of the presence of high velocity shear at the ocean surface, the specific 
mechanics of breaking are quite different. Thus, the breaking of Branch I instability 
waves is caused by a very sharp variation of the u velocity component with x, while the 
free-surface elevation remains low (see the sketch in figure 37a). In other words, in 
Branch I breaking, the crest of the wave overtakes the trough of the wave. The 
breaking of Branch I1 instability waves, on the other hand, is caused by a very sharp 
variation of the w velocity component with x, after the wave elevation has reached a 
substantial value (see the sketch in figure 37b). The dynamics of the free-surface 
elevation are related to the location and strength of the vortices formed in the fluid 
below, which determine the structure of the induced velocity field at the free surface, 
as explained in detail in 9Q5.2 and 5.3. We note that the breaking of the Branch I waves 
is qualitatively similar to that found by Tryggvason (1988) for the free-surface 
signature of a submerged vortex sheet; there is no equivalent, however, of the Branch I1 
waves for the submerged vortex sheet. 

An equilibrium state is therefore reached by the free-surface manifestation only 
when the variation of both velocity components with x at the free surface is smooth 
enough to allow the formation of a propagating surface wave. At low Froude numbers, 
a smoothly varying velocity field is formed only by Branch I1 instability waves. The 
shape of these waves seems similar to the symmetric waves of permanent form found 
by Milinazzo & Saffman (1990). Moreover, the breaking waves that we observed, both 
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FIGURE 37. (a) Sketch of the breaking of Branch I instability waves. Sharp horizontal velocity shear 
at the free surface breaks the wave, while the wave height remains small. (b) Sketch of the breaking 
of Branch I1 instability waves. Sharp vertical velocity shear at the free surface breaks the wave, after 
the wave height has become substantial. 

of Branch I and Branch I1 type, are not symmetric. A quantitative comparison is rather 
difficult, since the flow in Milinazzo & Saffman (1990) consists of a thin layer of 
uniform vorticity of low value, whereas the flow in the present study has continuous 
vorticity with high values. 

In summary, the generation of stable propagating surface waves above a shear flow 
occurs at low Froude numbers for Branch I1 instability waves. It will be interesting to 
investigate the effect of three-dimensionality on these waves and on the structure of 
their vorticity field by allowing the perturbation around the initial state to be three- 
dimensional. 
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